Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform.
نویسندگان
چکیده
Two-dimensional (2D) molybdenum oxides at their various stoichiometries are promising candidates for generating plasmon resonances in visible light range. Herein, we demonstrate plasmonic 2D molybdenum oxide flakes for gas sensing applications, in which hydrogen (H2) is selected as a model gas. The 2D molybdenum oxide flakes are obtained using a grinding-assisted liquid exfoliation method and exposed to simulated sunlight to acquire its substoichiometric quasi-metallic form. After the exposure to H2 gas molecules, the quasi-metallic molybdenum oxide flakes are partially transformed into semiconducting states, thus gradually losing their plasmonic properties. The novel 2D plasmonic sensing platform is tested using different concentrations of H2 gas at various operating temperatures to comprehensively assess its sensing performance. The presented 2D plasmonic system offers great opportunities for future sensing and optical applications.
منابع مشابه
Photoluminescence quenching in gold - MoS2 hybrid nanoflakes
Achieving tunability of two dimensional (2D) transition metal dichalcogenides (TMDs) functions calls for the introduction of hybrid 2D materials by means of localized interactions with zero dimensional (0D) materials. A metal-semiconductor interface, as in gold (Au) - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science as it constitutes an outstanding pl...
متن کاملComparison of doped combination zirconium-tungsten, zirconium- molybdenum and molybdenum-tungsten on single-wall vanadium oxide nanotube in hydrogen gas adsorption
In this study, doped vanadium oxide nanotubes were evaluated using different software to study the absorption of hydrogen gas. Vanadium oxide nanotubes are one of the options for absorption and storage hydrogen gas. In this research study for the first time, the Monte Carlo simulation was used to investigate the hydrogen gas absorption behavior in molybdenum-tungsten, molybdenum-zirconium and z...
متن کاملThermally reduced kaolin-graphene oxide nanocomposites for gas sensing
Highly sensitive graphene-based gas sensors can be made using large-area single layer graphene, but the cost of large-area pure graphene is high, making the simpler reduced graphene oxide (rGO) an attractive alternative. To use rGO for gas sensing, however, require a high active surface area and slightly different approach is needed. Here, we report on a simple method to produce kaolin-graphene...
متن کاملFabrication, characterization and investigation of gas sensing properties of MoO3 thin films
In this research, molybdenum oxide (α-MoO3) thin films were coated on glass substrates using spray pyrolysis technique. 0.05 M ammonium heptamolybdate tetrahydrate was used as precursor and deionized water as solvent. The effects of carrier gas pressure, during the spraying of the solution, on the structural, optical, morphological and gas sensing properties of thin films were studied. X-ray di...
متن کاملRoom temperature rubbing for few-layer two-dimensional thin flakes directly on flexible polymer substrates
The functional layers of few-layer two-dimensional (2-D) thin flakes on flexible polymers for stretchable applications have attracted much interest. However, most fabrication methods are "indirect" processes that require transfer steps. Moreover, previously reported "transfer-free" methods are only suitable for graphene and not for other few-layer 2-D thin flakes. Here, a friction based room te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 21 شماره
صفحات -
تاریخ انتشار 2014